The influence of pressure on the self-assembly of the thick filament from the myosin of vertebrate skeletal muscle.

نویسنده

  • J S Davis
چکیده

The thick-filament-monomeric-myosin equilibrium was prepared from pure myosin at pH 8.1. The application of hydrostatic pressure to the self-assembly equilibrium resulted in a biphasic dissociation curve in which a linear decrease in turbidity (a measure of weight added to or lost from the filament) was followed by a transition to a second pressure-insensitive phase. The first phase represents the effect of hydrostatic pressure on the growth or propagation phase of filament assembly. Here is was shown that hydrostatic pressure served to shorten the filaments in concert towards the bare zone whilst maintaining the narrow length distribution seen at atmospheric pressure; the filament concentration remained constant during the experiment. A more precise definition of the delta-v for the assembly of monomer into filament was obtained than had hitherto been possible. The positioning of the bare zone at the centre of the filament seems to be one of the more obvious functions of the length-regulation mechanism. It also appears that all the basic structural elements of the native thick filament are potentially present in the pH 8.1 homopolymer; its length can be increased by physiological concentrations of MgCl2 and decreased by pressure. The monodisperse native filament could then be formed by a fine tuning of the basic length-regulation mechanism of the homopolymer by the co-polymerization of the other thick-filament proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-jump studies on the length-regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament.

The self-assembly of myosin monomer into thick filament occurs via a two-step mechanism. At first a pair of myosin monomers reacts to form a parallel dimer; the dimer in turn adds to the filament ends at a rate that is independent of filament length. The rate of the dissociation reaction on the other hand is length-dependent. The 'off' rate constant has been shown to increase exponentially by a...

متن کامل

Mef2s are required for thick filament formation in nascent muscle fibres.

During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres,...

متن کامل

Myosin molecule packing within the vertebrate skeletal muscle thick filaments. A complete bipolar model.

Computer modelling related to the real dimensions of both the whole filament and the myosin molecule subfragments has revealed two alternative modes for myosin molecule packing which lead to the head disposition similar to that observed by EM on the surface of the cross-bridge zone of the relaxed vertebrate skeletal muscle thick filaments. One of the modes has been known for three decades and i...

متن کامل

Functional analysis of the chicken sarcomeric myosin rod: regulation of dimerization, solubility, and fibrillogenesis.

Introduction Myosin is the major structural and functional protein in skeletal muscle fibers. Myosin contains an actin-activated ATPase activity that is the driving force for the relative shortening of the myofibril and is responsible for force generation in skeletal muscle (10). Within the myofibril, myosin is found within a structure known as a thick filament. Native thick filaments isolated ...

متن کامل

The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization

Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 197 2  شماره 

صفحات  -

تاریخ انتشار 1981